Reservoir Simulation of CO₂ CPGE Storage in Deep Saline Aquifers

Presented by: Mark H. Holtz

Authors

A. Kumar, M. Noh, G.A. Pope, K. Sepehrnoori, S.L. Bryant and L.W. Lake.

Center of Petroleum & Geosystems Engineering,

The University of Texas at Austin.

Modeling Approach

- Numerical compositional simulation
- Key processes
 - CO₂/brine mass transfer
 - Multiphase flow
 - During injection (pressure driven)
 - □ After injection (gravity driven)
 - Chemical reactions
- Key outputs..CO₂ concentration in
 - Brine (as CO_3^{2-} and HCO_3^{--})
 - \blacksquare Gas (as CO_2)
 - Solid (as CO_3^{2-})

Method

- Obtain/parameterize physical property data
- Numerical simulations of storage scenario
 - 50 years CO₂ injection
 - 1000 years of gravity-driven fluid movement
 - GEM compositional simulator (CMG)
- Quantify storage in different sinks
 - CO₂-rich gas phase (residual saturation)
 - CO₂-saturated brine
 - Carbonate minerals

Key Physical Properties (1): CO2 Solubility in Aqueous Phase

Key Physical Properties (2):

Density of CO₂-Saturated Brine

Effects of Physical Properties

- Shallow and high salinity aquifers will dissolve less CO₂ in aqueous phase than deep, low salinity aquifer
 - Salinity affects the distribution of CO₂
 between various immobile phases in the order of 10% of total CO₂ injected
- After CO₂ injection ends, buoyancy continues to drive flow
 - Low density CO₂-rich gas will move up
 - High density brine containing dissolved CO₂ will sink

Key Petrophysical Properties

- Porosity
- Permeability
 - Magnitude
 - Anisotropy
- Residual gas saturation
 - Correlation with porosity (Holtz, 2002)
- Relative permeability
- Hysteresis
 - Land model

Correlation Between Various Aquifer Properties

Hysteresis during Storage

Modeling Hysteresis with GEMCPGE for Gas Relative Permeability Curve

- krg(Sg) = krg(Dr;Sg),during drainage;
- krg(Sg) = krg(Dr;Sg(shifted)), during imbibition;

where

Sg(shifted)=(Sg-Sgrh)(Sgh)/(Sgh-Sgrh).

$$\frac{1}{S_{gr}^{\text{max}}} - 1 = \frac{1}{S_{grh}} - \frac{1}{S_{gh}}$$

- Sgh is the value of Sg when the shift to imbibition occurs
- Sgrh is the value of Sgr corresponding to Sgh via Land's equation
- Sgrmax is the user-entered parameter

Base Case Simulation

Aquifer and Well Locations

53,000 ft x 53,000 ft x 1000 ft

40 x 40 x 40

2265 psi

140 °F

100 md

0.001

1 degree

5300 ft

1.0

100,000 ppm

3300 psi

50 MMSCF/D

50 years

1000 years

Aquifer Dimensions

Grid

Initial Pressure

Aquifer Temperature

Mean Permeability

Permeability Ratio (K_v / K_h)

Dip

Depth

Initial Water Saturation

Salinity

Maximum Injection Pressure

Maximum Injection Rate

Injection Time

Total Run Time

Results:

Injection Strategy Limits Upward Migration

Results:

Brine Dissolution concentration migrates up-dip after injection

CO₂ mole fraction in aqueous phase

Key Findings (1):

The majority of CO₂ is stored as a residual phase

Key Findings (2):

Even low residual CO₂ saturation leads to residual phase as the dominant mechanism

Key Findings (3):

Well Completion Positioning Can Avoid Seal **Integrity Issues**

Completion scenario

> Injection well completed through entire aquifer

Result

- Up-dip migration of injected CO2 for long distances
- Increased opportunity for leakage through formation top

Summary and Conclusions

- After injection ends, capillary effects reduce the amount of mobile CO₂
 - Dissolution into brine
 - Gravity driven flow
- Time required to eliminate mobile CO₂ depends on petrophysical properties of aquifer
 - Residual gas saturation (Sgr)
 - Average permeability
 - Relative permeability (inc. hysteresis)
 - Anisotropy
- Gas migration is affected most by
 - Dip
 - Anisotropy

Summary and Conclusions

- Large fractions (>95%) of injected CO₂ can be immobilized in 1000 y
- Well completion design may significantly reduce the chances of leakage
- Potential leakage of gas through faults/fractures prior to trapping should be studied in more detail

Extra Slides

CPGE

Tuning PR-EOS Parameters for CO2-Brine System

$$BIC_{H2O-CO2} = -0.093625 + (4.861E - 4*(T-113)) + (2.29E - 7*S)$$

$$VSP_{H2O} = 0.179 + (2.2222E - 4*(T-113)) + (4.9867E - 7*S)$$

- BIC_{H2O-CO2} is Binary Interaction Coefficient for H2O-CO2 pair
- VSP_{H2O} Volume Shift Parameter for H2O
- T is temperature in degree Fahrenheit
- S is salinity of brine in ppm of NaCl

Tuning Binary Interaction Coefficien FPGE for H2O-CO2 pair

$$BIC_{H2O-CO2} = -0.093625 + (4.861E - 4*(T - 113)) + (2.29E - 7*S)$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.00$$

$$0.04$$

$$0.00$$

$$0.04$$

$$0.00$$

$$0.04$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0$$

Tuning Volume Shift Parameter CPCE for H2O

$$VSP_{H2O} = 0.179 + (2.2222E - 4*(T - 113)) + (4.9867E - 7*S)$$

